Inapproximability of H-Transversal/Packing
نویسندگان
چکیده
Given an undirected graph G = (VG, EG) and a fixed pattern graph H = (VH , EH) with k vertices, we consider the H-Transversal and H-Packing problems. The former asks to find the smallest S ⊆ VG such that the subgraph induced by VG \ S does not have H as a subgraph, and the latter asks to find the maximum number of pairwise disjoint k-subsets S1, ..., Sm ⊆ VG such that the subgraph induced by each Si has H as a subgraph. We prove that if H is 2-connected, H-Transversal and H-Packing are almost as hard to approximate as general k-Hypergraph Vertex Cover and k-Set Packing, so it is NP-hard to approximate them within a factor of Ω(k) and Ω̃(k) respectively. We also show that there is a 1-connected H where H-Transversal admits an O(log k)-approximation algorithm, so that the connectivity requirement cannot be relaxed from 2 to 1. For a special case of H-Transversal where H is a (family of) cycles, we mention the implication of our result to the related Feedback Vertex Set problem, and give a different hardness proof for directed graphs. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
منابع مشابه
On Approximating Four Covering/Packing Problems With Applications to Bioinformatics
In this paper, we consider approximability of four covering/packing type problems which have important applications in computational biology. The problems considered in this paper are the triangle packing problem, the full sibling reconstruction problem under two parsimonious assumptions, the maximum profit coverage problem and the 2-coverage problem. We provide approximation algorithms and ina...
متن کاملHow well can Primal - Dual and Local - Ratio algorithms perform ? ∗ Allan
We define an algorithmic paradigm, the stack model, that captures many primal dual and local ratio algorithms for approximating covering and packing problems. The stack model is defined syntactically and without any complexity limitations and hence our approximation bounds are independent of the P vs NP question. Using the stack model, we bound the performance of a broad class of primal dual an...
متن کاملHow well can Primal-Dual and Local-Ratio algorithms
We define an algorithmic paradigm, the stack model, that captures many primal-dual and local-ratio algorithms for approximating covering and packing problems. The stack model is defined syntactically and without any complexity limitations and hence our approximation bounds are independent of the P vs NP question. We provide tools to bound the performance of primal dual and local ratio algorithm...
متن کاملOn Approximating Four Covering and Packing Problems
In this paper, we consider approximability issues of the following four problems: triangle packing, full sibling reconstruction, maximum profit coverage and 2-coverage. All of them are generalized or specialized versions of set-cover and have applications in biology ranging from fullsibling reconstructions in wild populations to biomolecular clusterings; however, as this paper shows, their appr...
متن کاملInapproximability Results for Orthogonal Rectangle Packing Problems with Rotations
Recently Bansal and Sviridenko [4] proved that there is no asymptotic PTAS for 2-dimensional Orthogonal Rectangle Bin Packing without rotations allowed, unless P = NP. We show that similar approximation hardness results hold for several rectangle packing problems even if rotations by ninety degrees around the axes are allowed. Moreover, for some of these problems we provide explicit lower bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 31 شماره
صفحات -
تاریخ انتشار 2015